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Chapter 7. The interaction description  
1.0. Introduction. A modern state of the interaction 
description. 

The purpose of present chapter is to show that the mathematical description of 
interaction in CWED is equivalent to the interaction description both in classical and 
quantum mechanics.  

1.1. Force and energy forms of the interaction description  
It is known that interaction defines the most important characteristics of the 

matter motion and in form of the force or energy it is included in all equations of 
motion: equations of Newton, Schroedinger, Dirac, equations of weak and strong 
interactions, etc.  

As it is known, interaction can be expressed as force and as energy. The force 
form of the description of interaction is integral, and the energy form, relatively to it, 
is differential. These forms are interconnected and can be defined one through 
another. In classical physics, the force is equal to a gradient of potential energy. 
Generally this dependence is more complex, but is also defined by the operation of 
differentiation. This implies the particularity of the connection of these two kinds of 
interaction description: the full unambiguity of transition from force to energy (and 
on the contrary) does not exist. For example, it is always possible to add to the 
energy some function (at least, a constant) so that the force value does not change.  

In modern physics the most general forms of the interaction description are 
introduced by Lagrange and Hamilton approaches (Leech, 1958; Landau and 
Lifshitz, 1977). 

1.2. Lagrangian and Hamiltonian aproaches 

1.2.1. Mechanical system of a rigid body (particles) 
The Lagrangian mechanics works generaly in n-dimensional configuration 

space, which includes all parameters, defining a static state of mechanical system 
(coordinates of particles, orientation of rigid body, etc). A point in this space 

draws a curve  in evolution (
νx

)(txν n,...,2,1=ν , where  is a number of 

independent variables). For such curves a functional 

n
( ))(txS , called action, is 

introduced. Only those curves, on which the action reaches an extremum, correspond 
to real evolution (Hamilton principle).  

Usually consideration is restricted to functionals of the form  
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with Lagrange function  dependent only on generalized coordinates 

and velocities . For one material point this expression will be written down as 
follows 
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where  tr ,,υrr
 are material point radius-vector, velocity and time correspondingly. 

The condition of extremum for the action  
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leads to Euler-Lagrange equations:  
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This is (normally) a system of second order differential equations, with solutions 

uniquely defined by initial coordinates and velocities .  )0(),0( νν

•

xx
In Hamiltonian mechanics approach the state of the system is described by a 

point in 2n-dimensional phase space, where p is momenta of particle. The 

dynamics is defined by a function H(x,p), called Hamilton function, via 
equations:  
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Transition from Lagrange to Hamilton function mechanics is performed by 
Legendre transformation. It defines the momenta and Hamilton function as:  
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The Hamilton function depends on coordinates and momenta, so one should 
express the velocities via momenta, inverting the definitions of momenta: 

, and substitute the result into Hamilton function.  ),( pxxx
••
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1.2.2. Continuous systems (fields) 
For fields the Lagrange function is defined by the Lagrange function density 

L in following way:  

 ∫= τdLL ,  (1.7)    

where τd is an element of spatial volume. The Lagrange function density or 
Lagrangian depends generally on field functions and their derivatives, coordinates 
and time:  
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where µψ are the field functions, N,...,2,1=µ  ( is a number of the functions); N
n,...,2,1=ν  (  is a number of independent variables). In this case an action will 

be written down as follows: 
n
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and Euler-Lagrange equations in case of the continuous system (field) become: 

 0
1

=
∂
∂

−
∂

∂∂∑
=

•
µ

µ

ν ψψ

LL
dx

n

i

,  (1.10) 

In the present time the Lagrangians are selected on base of some general 
requirements of symmetry (invariance), which have been produced during last 
century. 

The approach of Hamilton in case of a continuous system performs by following 
way. Putting the value Η named Hamilton function density or Hamiltonian of the 
system:  
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so that 

 ∫Η=Η τd ,  (1.12) 

and the Legendre transformation can be writen down as: 
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where   νπ  is canonical momentum density. Then the dynamics is defined by 
Hamiltonian via equations:  
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Hamilton function defines the full energy of system. When it is known, through 
it, by the known method, it is possible to express all other characteristics of system. 
This aproach is most frequently used for the description of elementary particles and 
fields. 

1.3. The force form description of interaction  

1.3.1. The conservative systems of rigid bodies  
In case of conservative system of material points (i.e. of systems in which forces 

are gradients of potential) it has been found (postulated) that Lagrange function can 
be expressed as follows: 
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This expression can be copied as: 

 intLLL free += ,  (1.16)  

where the first term answers to the energy of a free particle (which in this case is the 
kinetic energy), and the second term describes the energy of interaction of particles 
(in this case, potential energy). 

Note, that in relativistic mechanics the correct equations of motion turn out only 
when instead of kinetic energy the value named kinetic potential is entered: 
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From Euler - Lagrange equations we obtain the equations of motion of material 
point (which are practically the Newton equation of motion): 
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where i

i

Q
x

T
dt
d
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•  are inertial forces; Kc

i

Q
x
T

−=
∂
∂

 are the generalized form of 

centrifugal and Coriolis forces; νQ
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 are the generalized forces of interaction. 

1.3.2. Non-conservative systems  
Generally in nature the forces are not set as gradients of potential. In particular, 

this has no place in case of relativistic motion of bodies and in case of 
electrodynamics. But surprisingly, here the generalized components of force can be 
set in such a way that the form of the Euler - Lagrange equation is kept. Let’s show it 
(Leech, 1958). 

It appears that instead of potential ( ) ( nxxxVxV ,...,, 21 )=ν , which does not 

dependent on time, it is often possible to set the function  so that 

the generalized force, instead of  
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For example in such important case as electrodynamics the Lorentz force can be 
expressed in the above form, if as M - function we will choose the following 
expression: 
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where ϕ  is a scalar potential, and A
r

 is a vector potential of an electromagnetic 
field. Actually, substituting this expression in (1.20), we will obtain: 
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By differentiation of (1.21) and taking into account that AB
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rr 1ϕ  , it is easy to obtain the usual expression for Lorentz force: 
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Since in this case 
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it is easy to see that the M  function is the energy of the electromagnetic interaction, 
corresponding to Lorentz force. Actually, using known relationships of 4 - current 
and 4 - potential: 
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we obtain the known expression of the current - current interaction energy:  

     νν AjM −= ,   (1.26) 

1.4. The modern approach to the interaction description in the 
quantum field theory  

Practically in the modern quantum field theory (Kaempffer, 1965) there are no 
enough proved arguments allowing theoretically to deduce real interaction. 

The rule of replacement  with  in the presence of an 

electromagnetic field is known for a long time and is successfully applied to the 
correct description of experimental situations, when the representation of an 
electromagnetic field in classical potentials is meaningful. The substantiation of this 
choice can be made, proceeding from the gauge invariance principle. (minimal 
coupling). 

µP µµ eAP +

Note (Kaempffer, 1965) that it is important in connection with our theory. 
Identification of the phase derivative of the quantum wave function ψ with the 
electromagnetic potential, expressed by the relation  
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(where ( )xβ  is a phase) leads to the existence of some observable effects, which 
has been disclosed by Aharonov and Bohm (Aharonov and Bohm, 1959) and whose 
sense for the understanding of interaction is important. In connection with CWED it 
is interesting  that it is possible (Kaempffer, 1965) to formulate the QED without the 
potentials, if we recognize that non-locality is inherent to the concept of the phase, 
which depends on the integration way, as Mandelstam has shown (Mandelstam, 
1962). Then, apparently, it is more reasonable to consider the Bohm - Aharonov 
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experiment as the instruction on essential non-locality (that correspond also to the 
case of CWED). 

In quantum field theory (Kaempffer, 1965; Ryder, 1985; Frauenfelder and 
Henley, 1974) it is postulated that the Lagrangian is possible to present as the sum of 
Lagrangian of free particles and Lagrangian of their interactions: 

 intLLL free += ,  (1.28) 

Here Lagrangian of free particles represents the sum of Lagrangians of each free 
particle separately. For example, in QED we have 

 γLLL efree += ,  (1.29) 

where γLLe , are Lagrangians of free electron and photon respectively. The 

Lagrangian of the interaction is either postulated, or obtained due to gauge invariance 
in the form of current-current interaction. As it is known in the theory of Standard 
Model (SM) the Lagrangians of free particles and their interactions are a 
generalization of Lagrangian of QED (Ryder, 1985; Frauenfelder and Henley, 1974). 

Since the elementary particles of CWED are twirled electromagnetic waves, we 
begin the analysis from Lagrangian and Hamiltonian of linear electromagnetic 
waves. 

2.0. Lagrangian and Hamiltonian of the Maxwell-Lorentz 
electrodynamics 

As it is known  (Landau and Lifshitz, 1977; Jackson, 1999) the Lagrangian and 
Hamiltonian, which completely describes the system of charge particles in the 
framework of classical electrodynamics looks like: 
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Let's show, that these Lagrangian and Hamiltonian allow us also to describe the 
interactions as it has place in modern field theory (further for short we will talk about 
Lagrangian only). These results are convenient to unify in the following theorem: 

The Lagrangian of the system of interaction charge particles, due to the 
principle of  fields’ superposition, is automatically divided on two parts:  

1st part is the Lagrangian of the free particles, which is equal to the sum of 
Lagrangians, each of which describes the Lagrangian of one free particle  and does 
not depend on the presence of other particles. Lagrangian of one free particle is 
determined by squares of own fields  of  particle;  
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2nd part is the Lagrangian of the interaction of particles, which is equal to the 
sum of Lagrangians, each of which describes interaction of one pair particles of 
system and does not depend on presence of other fields. Lagrangian of the 
interaction of any two particles is described by cross products of these two particles’ 
fields.  

Let's try to prove this theorem. 
Let the system consists of two particles 1 and 2, which have both the electric and 

magnetic fields: 11, HE
rr

 and 22 , HE
rr

. According to a principle of superposition 
a total field of system of particles is equal to the sum of the fields created by each 
particle separately: 21 EEE

rrr
+= , 21 HHH

rrr
+= . 

Thus, for Lagrangian and Hamiltonian of two interacting particles we obtain: 
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As we see, Lagrangian of systems of two interacting particles is actually broken 
into two parts, one of which is defined only by own fields of each particle, and the 
other part is defined by fields of two particles together. 

It is easy to see that terms of the first part correspond to Lagrangians of free 
particles also in the framework of  quantum theory, if  from EM wave functions we 
go on to the quantum form of these functions. Thus, we need only to prove now that 
second terms define the interaction of the charge particles, as it is described in 
quantum field theory. 

Note first of all that due to the fact that the general Lagrangian of system of 
particles is defined by a square of the sum of fields, in the case of any number of 
charge particles the cross terms will be defined by fields that belong only to two 
different particles. Taking into account the known results (Landau and Lifshitz, 
1977; Jackson, 1999; Brillouin, 1970) we will prove the above theorem for the case 
of two charged particles.  

2.1. The interaction description of two charge particles  

2.1.1. The case of static particles.  
Obviously in this case only an electrostatic field is present.  
Let we have two charges  and , situated on distance  from each other. 

The values of a field in any space point P, which are situated on distances with 
radius-vectors  and  

1q 2q ar

1r
r
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r

 from charges, are defined by expressions: 
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where 0
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 and  0
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 are the unit vectors of corresponding radius-vectors,  and  
are absolute values of the lasts. The energy density of an electric field in point P is 
equal to a square of electric field vector in this point: 
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where θ  is a angle between vectors 1r
r

 and  2r
r

 Thus the Lagrangian of a total field 
can be written down as: 
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Here the first and second terms, obviously, represent the Lagrangian of free 
particles. To find out the meaning of third term, containing cross product of charges 

, we will calculate the Lagrange function, corresponding to this term, using 

(1.7). As 
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=ϕ  is static potential for the 

second charge, we will obtain: 
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Integrating by parts, we obtain: 
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Here the first term is equal to zero, and in the second term, according to Maxwell 
we have: 
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where eρ  is the density of an electric charge . Then, accepting, that1q ao rr << , we 
obtain: 

 ϕρeL =12 ,  (2.11) 

Thus the Lagrangian (2.11), adequate to the third term of (2.7), is Lagrangian of 
interaction of two charges interaction in the case of a static field and has the form of 
a current-to- current. 

2.1.2. The case of moving particles 
Now we will consider the Lagrangian of two interacting charges, which are in 

motion. Here alongside with an electric field the magnetic field will also appear. 
Thus, we should analyze a general view of the Lagrangian in case of any motion of 
electric charges 

First of all, a question arises, of whether the electric field varies in case that 
charges move. This question can be formulated in more general sense: will the Gauss 
theorem be right in case when the charges move? The experiment answers positively 
(Purcell, 1975). Hence, the above-stated analysis, concerning a static particles, will 
be true as well as in case of moving charges. Thus, further it is enough to analyze 
only the term of the general Lagrangian, which contains a magnetic field.  

In point P the magnetic fields from each particle have the form: 
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(where υr  is the particle velocity)  and the energy density will be 
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Using (2.13) for Lagrangian we have 

 1221 LLLL oo ++= ,  (2.14) 
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interaction. Let’s show by calculating of the Lagrangian that this assumption is true: 
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of current of the second charge (here j
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 is the current density), we will obtain:  
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Integrating by parts in scalar form, we obtain: 
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where ( ) ( ) mlzyxmzyxl ≠== ,,,,,,  and under the sum the signs are 

alternated. Here the first term is equal to zero, and in the second term according to 
Maxwell we have: 
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Then we obtain: 
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This means that the interaction Lagrangian, relatively to magnetic fields of two 
moving charges, has also the form of current-to-current interaction. 

So, generally we obtain that the interaction Lagrangian of two moving charge 
particles is defined by the commutator of the electric and magnetic fields of two 
particles, and can be written down in the form of a current - current interaction: 

 νν AjLL −== int12 ,  (2.20) 

Obviously, in this case the general Hamiltonian of interactions will be written 
down as follows: 
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2.2.  Interaction description of systems of charge particles  
In case that the system consists of a number of charged particles of both signs 

and different sizes of charges, we receive the object, possessing various new 
electromagnetic properties.  

As it is known, the system of moving charges possesses in general the 
electromagnetic moments. In some cases the total charge or current of a system 
(which in this case are also named zero moments of a system) can be equal to zero 
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(i.e. it is a neutral system) while other moments are not equal to zero. This means, 
that these systems are capable to interact due to other moments. The interaction 
energy of such systems is much lower than the energy of interaction of the charged 
systems, but is not equal to zero. For example, the atoms, being the neutral objects, 
nevertheless are capable of interacting among themselves by various forces, which 
frequently are named Van der Waals forces. In QM these forces depend additionally 
on spin orientation and other quantum parameters. 

We have shown that the neutral particle in framework of CWED (see chapter 5) 
is also an (twirled) electromagnetic field. Thus, in case of neutral particles the 
interaction must also described by the formula of a current-to-current interaction. 

For the charge system the description by EM potentials are usually used.  As it is 
known, the use of potentials facilitates the mathematical analysis of problems of 
electrodynamics. In particular, for the scalar potential in large distances from the 
system of charges, we have the expansion: 
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where in case of continuous distribution of charges we have: ∫= ')'( dVrq ρ  is 

the full charge of the system, ∫= ')'(' dVrrp ρr
 is the dipole moment of the 

system,    is the tensor of the quadrupole 

moment of the system of charges, etc.  (in case of a discrete system of point charges 
we have sums instead of integrals). 
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In general case of arbitrarily moving charges we obtain the so-called  Lienar - 
Wiechert potential: 
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where )( 'tsr   are the coordinates of the particle, rr  are the coordinates of the 

observation point,  is its velocity,  is the charge, )()( tst
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and  is the retarded moment of time, which is defined by the relation: 't
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so that difference ctsrtt /)( '' rr
−=−  represents the time of distribution of the 

electromagnetic perturbation from the particle up to an observation point of the field. 
Since in the CWED instead of potentials, the strength of electromagnetic field is 

considered as wave function, we remember that in electrodynamics there is an 
opportunity to write the interaction through field strengths.  

As it is known (Jackson, 1999), the electromagnetic fields of a moving charge 
can be described as following: 
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Each of these expressions consist of two components. The first component forms 
quasi-stationary fields, which change in space as 2−R  and does not contain the 
acceleration of a charge.  The second component describes a wave field of radiation: 

it is proportional to acceleration  and decreases as 
•

υ 1−R . It is easy to show, that the 
energy flax of quasi-stationary fields decreases as 2−R . Hence, the quasi-stationary 
field remains all time connected with a particle and does not create energy flax on 
infinity. 

So, on large distances from a particle in expressions (2.26)-(2.27) only the 
second terms (named wave field) remains. This means that the electromagnetic 
perturbations can propagate from charge particle to the infinity. Due to these fields, 
i.e. electromagnetic waves, the particle systems interact with each other on a long 
distance. Obviously in linear case this interaction is represented by the interference of 
electromagnetic waves. 

Thus, in case of the neutral particles the interaction Lagrangian (Hamiltonian) 
doesn’t equal to zero, but can be presented as series, some terms of which will be 
equal to zero. 

3.0. Consequences of the theorem 
3.1. About masses of the interaction particles  

We have shown above that the cross product of fields in Lagrangian accords to a 
current - current interaction form. From this, the next important consequences follow. 

1. The energy of two or more interacting objects is bigger than the energy of free 
objects, and the difference corresponds to the term of cross product of fields. 

An important question arises: how the interaction energy of two objects is 
divided between them? Let’s consider one concrete case. For simplicity we will only 
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talk about an electric field. The full density of energy of two interacting particles 
looks like: 

 ( ) oo uuuEEu 2int1
2

218
1

++=+=
rr

π
, (3.1) 

where  2
11 8

1 Eu o

r

π
=  and  2

22 8
1 Eu o

r

π
=  are the densities of energy of the first 

and second particles in a free state accordingly, and [ ]1221int 8
1 EEEEu

rrrr
+=

π
  is 

the density of interaction energy of these particles. As both components in the last 
formula are equal, we can accept that: 

2. The interaction energy is divided  fifty-fifty between two interacting particles. 
From above it follows that the interaction energy density of each particle is equal 

to each other: 

 2int211int 8
1 uEEu ==

rr

π
,  (3.2) 

and the full density of energy of each interacting particles is equal  to: 

( 21
2

11 8
1 EEEu )rrr

+=
π

  for the first particle, and ( )21
2
22 8

1 EEEu
rrr

+=
π

   for 

the second particle. 

Since the energy is defined by integral from energy density ∫
∞

=
0

2
1 τε ud
c

, the 

same conclusion refers also to the energy:   

  2int1int εε = ,  (3.3) 

3. From above, in conformity with the known Einstein expression 2c
m ε
= , it 

follows that the mass of each interacting particle increases in comparison with the 
mass of the free particle on half  value of  the term of the field cross product. 

In other words, the mass of interaction of two particles divides fifty-fifty 
between them so that 2int1int mm = , and for the masses of interacting particles we 
have 

  ,  (3.4) 2int0221int011 , mmmmmm +=+=

3.2. The Newton force form of interaction description 
Let’s show, that in framework of CWED the consequences of the above-stated 

theorem result in the classical mechanics laws. 
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3.2.1. The second law of Newton  
According to the second law of Newton (Leech, 1958) we have 

 ∑= iF
dt
pd rr

,  (3.5) 

where pr  is a momentum of the particle,  iF
r

 are all forces acted on the particle.  
For particles in electromagnetic field, it is easy to show that the equation (3.5) 

follows from relativistic Lagrangian of the charge particle in the electromagnetic 
fields (see the textbooks on electrodynamics, e.g. (Jackson, 1999)). 

If the question is only about the electromagnetic field without particles, in this 
case, as it is known (Bo Thide, 2002), “The momentum theorem” exists, which 
shows the validity of the law of Newton concerning the electromagnetic field as a 
material carrier (note that in framework of CWED “The momentum theorem” can 
easy to prove by other way (see chapter 4)). 

We should also remind that according to Ehrenfest theorem (Schiff, 1955) it is 
possible from Dirac equation to obtain the equation of Newton (Leech, 1958; Landau 
and Lifshitz, 1977). Since the Dirac equation coincides precisely with the electron 
equation of CWED (see chapter 2) it is possible to assert that Ehrenfest theorem 
proves that the equation of Newton also follows from CWED (see chapter 4). 

3.2.2. The third law of Newton. 
Recall the Newton's Third Law of motion: “For every action there is an equal 

and opposite reaction”. It is easy to make sure, that the third law of Newton also 
follows from the above-stated conclusions. Actually, using the expression (1.20), we 
can write down: 

 M
2
1

2int1int == εε ,   (3.6) 

Using the Euler-Lagrange approach (see the force expression  (1.21)) it is easy to 
show from (3.6) that action and counteraction values of forces are equal. It is not 
difficult to show that the direction of force will be opposite. Thus we obtain Newton's 
Third Law for forces: 21 FF

rr
−=  

4.0. Lagrangian of interaction of CWED particles  
Here we will consider the electrodynamics form of the Lagrangians of the 

CWED vector boson and the CWED lepton equations.  

4.1. Lagrangian of the vector boson particle    
In the case of the curvilinear motion of the electromagnetic field (i.e. of photon) we 
have obtained (see the chapter 2) the Klein-Gordon-like equation, which we have 
named the twirled photon equation:  
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 ( ) ,0ˆˆ 42222 =−− ψε cmpc r
  (4.1) 

Τhe Lagrangian of the equation (4.8) can be written in the form: 

 ( ) ( ) ψβαεαβαεαψ 22 ˆˆˆˆˆˆˆˆˆˆ mcpcmcpcL oo −⋅++⋅−= + rrrr
,    (4.2) 

which is equivalent to the Lagrangian 

 ,  (4.3) ψψψψ µ
µ

++ −∂∂= 42cmL

4.1.2. Lagrangian of the lepton particles 
The  Lagrngians of the fermions can write in the following form (Shiff, 1955): 

 ( ) ψβαεαψ 2ˆˆˆˆˆ mcpcL o ±⋅= + rr
m ,  (4.4) 

The Lagrangian (4.4) can be represents as 

 '0 LLL += ,  (4.5) 

where  

 ( ) ψαεαψ pcL o
ˆˆˆˆ0
rr

m ⋅= + ,  (4.6) 

It is not difficult to see that the Lagrangian (4.6) defines the Maxwell equation 
without current, i.e. this part is the Lagrangian of a free electromagnetic wave 
(photon), and    

 ( ) ψβψ 2ˆ' mcL ±= + ,  (4.7) 

For other term, in the electromagnetic form we have 

 22ˆ HE
rr

−=+ ψβψ ,  (4.8)    

Let’s analyze this term. Note that due to Dirac equation we have 

( ) 0ˆˆˆˆˆ 2 =±⋅= + ψβαεαψ mcpcL o
rr

m  and can write 

 ( ) ( ) ψαεαψψβψ pcmc o
ˆˆˆˆˆ 2 rr

m ⋅=± ++ ,  (4.9) 

Let us analyze the electromagnetic sense of each part of (4.9) using only minus 
sign and consider the Euler-Lagrange equation, which corresponds to (4.4). Taking 
into account the electromagnetic expression of wave function we obtain the 
following equation: 
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   (4.10) 

where 
h

2mc
=ω . The equation (4.10) is the Maxwell equations with imaginary 

currents, and these currents have the form of the tangent component of the 
displacement current of the twirled electromagnetic wave: 

 Eij ee
rr

π
ω

τ 4
= , Hij em

rr

π
ω

τ 4
= ,       (4.11) 

Using (4.11) the expression (4.12) can be presented in other form: (5.74) 

 ( ) ( )HjEjHEiL mee
rrrrrr

ττπ
ω

−=−=
2
1

8
' 22 ,  (4.12) 

Thus, this part of the Lagrangian of lepton is the self-action Lagrangian and is 
responsible for interaction of its own lepton current with its own lepton field. 

It is easy to generalize this expression in the case of the lepton interaction with 
an external field of other particle. According to the superposition principle of the 
fields, we have:  

 exinexin HHHEEE
rrrrrr

+=+= , ,  (4.14) 

Where, with the index "in" we have designated the characteristics of the 
investigated particle, which we described above without an index. And the index 
"ex" is used for the particle, which is "external" in relation to the  “in”- particle. 

Substituting (4.14) in (4.13), we obtain for the interaction Lagrangian: 

 ( ) ( ) ( )[ ]2222 2
8

' exexexinexininin HEHHEEHEiL
rrrrrrrr

−+−+−=
π
ω

, (4.15) 

The terms of expression (4.15) in case of interaction of particles are possibly 
presented as follows:  

( ) ( )
( ) ( ) ( )
( ) ( )ex
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e
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in
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ω
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π
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, (4.16) 

 



  
 103 

It is easy to see, that the first of the equations (4.16) corresponds to the self-
action of the "in"- particle, i.e. to interaction of own current of this particle with its 
own field.  

The second expression from (4.16) describes the interaction of  the "in"- particle 
with the "ex"- particle. As we have shown above, the cross product of vectors of a 
field is responsible for the interaction of particles and leads to the current-current 
interaction. Using the expression ( )in

m
exin

e
ex HjEj

rrrr
− , it is not difficult to obtain the 

Dirac equation of lepton in an external field (see also below).  
Obviously, the last expression from (4.15) describes the self-action of "ex"- 

particles and does not play any role in the description of "in"- particle. 

5.0 About mass of interacting particles 
Let us consider the Dirac equation with an external field:   

 ( ) ( )[ ] 0ˆˆˆˆˆˆˆ 2 =+⋅−+⋅− ψβαεααεα mcpcpc exexoo
rrrr

,  (5.1) 

As the internal field can be expressed through the electron mass:           

 inino pcmc rr
⋅−= αεαβ ˆˆˆ 2 ,  (5.2) 

we can write (5.1) as: 

( ) ( ) ( )[ ] 0ˆˆˆˆˆˆˆˆ =⋅−+⋅−+⋅− ψαεααεααεα ininoexexoo pcpcpc rrrrrr
, (5.3) 

According to (5.2) we can say, that some additional mass corresponds to an 
external field:  

 2ˆˆˆ cmpc adexexo βαεα =⋅−
rr

,  (5.4) 

Using (5.4), we will obtain:  

 ( )[ 0)(ˆˆˆˆˆ 2 =++⋅− ψβαεα cmmpc ado ]rr
,  (5.5) 

or   

 ( ) ψβψαεα 2)(ˆˆˆˆˆ cmmpc ado +−=⋅−
rr

,  (5.6) 

Thus, in the quantum form of the Dirac equation the external field can be considered 
as the addition to the mass of the electron.  

We can also write the right part of the equation (5.6) through currents (4.11). 
Using the expression of mass term through the currents of electromagnetic 
representation and taking into account that h2mc=ω  we will obtain:  

 ejiEmc
r
h

r
π42 −= , mjiHmc

r
h

r
π42 −= ,  (5.7) 

or 
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 jimc
r
hπψ 42 −= ,  (5.7’) 

where the matrix , which in this case has the components j { }m
z

e
x

m
z

e
x jjjj ,,, ,  we 

can name the current matrix. 
Substituting (5.7) in (5.6’), we will obtain: 

 ( ) )(4ˆˆˆˆˆ adeo jjipc +−=⋅− h
rr πβψαεα ,  (5.8) 

Comparing the above formulas we can make the following conclusions: 
in the framework of CWED the external field (i.e. interaction) acts as an addition to 
the electron’s own current, i.e. acts as some external current.  

The external field can be considered as a medium that has some polarization 
properties, which, obviously, can be characterized by the variable electric and 
magnetic permeability. In this case it is possible to express the additional current 
through the polarization vectors of medium as it is done in classical electrodynamics. 
From the above following also that in framework of CWED the interaction of 
elementary particles can be considered as dispersion at their propagation in a 
medium, which consists from other particles (wave optics representation).  

6.0 Connection of de Broglie waves refraction index with 
Hamiltonian 

It is not difficult to see, that in frameworks of CWED the equations (5.1) of 
interaction of the electron with other charged particles (or, in other words, the 
equations of the electron motion in the field of other particle) can be presented in 
form of the equations of the classical electrodynamics of medium: 

 ( )e
ex

e jj
c

Hrot
t
E

c
rrr

r

+−=−
π

∂
∂ 41

,       (6.1) 

 ( )m
ex

m jj
c

Erot
t
H

c
rrr

r

+=+
π

∂
∂ 41

,         (6.2) 

where me jj
rr

,  are the electric and magnetic current densities of the particle, 
m

ex
e
ex jj
rr

,  are the external current densities, which caused by the interaction of the 
given particle with other particles. In case if other particles form a medium as for 
example the physical vacuum, it can be presented, using the electromagnetic theory 
of polarised medium (Jackson, 1999;  Purcell, 1975; Bo Thide, 2002). In this case the 
external currents can be represented in the following way: 

 Eij ex
e
ex

rr
ε= ,  (6.3) 

 Hij ex
m
ex

rr
µ= ,  (6.4) 
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where exε  and exµ  are permittivity and permeability of the external medium, i.e. of 
the external particles. 

The Hamiltonian of Dirac’s lepton theory (5.1) is following: 

 ( )[ ] ψαεαβψα exexo pcmcpc rrrr
⋅−+−⋅=Η ˆˆˆˆˆˆ 2 ,   (6.5) 

Using (4.2) we can obtain the CWED representation of (6.5), which we will 
conditionally write in the form:  

 ( ) ( )me
ex

me jj
c

HErot ,,4,
rr

m
rr

+±⇔Η
π

,  (6.5’) 

The expression (6.5’) show that the connection of Hamiltonian with above 
currents (6.3) and (6.4) and correspondingly with the features of external medium 

exε  and exµ  exists. 
Due to above result the Schroedinger equation with an external field can be 

written down through a "quantum" refraction index of medium. Conformity between 
electrodynamics of optical waves and electrodynamics of de Broglie waves is the 
most evident look for the stationary Schroedinger equation. Actually, the stationary 
Schroedinger equation:  

 ( ) 02
int2

2 =−+∇ ψεεψ
h

m
,  (6.6) 

(where the energy ε  are Hamiltonian eigenvalues,  )(int reϕε =  is an interaction 
energy) is similar (Ebert, 1957)  to the optical wave equation, which determinates the 
light propagation in the medium whose  refraction index changes in space from point 
to point: 

 0
2 2

0

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∇ ψ

λ
π

ψ
n

,  (6.7) 

where  exexrnn µε== )(  is a refraction index,   0λ   is the length of wave in 

vacuum; and the optical wave length 
n

0λλ =  corresponds to the length of the de 

Broglie wave 
( )int2 εε

λ
−

==
m

h
p
h

. 

Since the elementary particles of CWED are the twirled electromagnetic waves, 
from the above follows that at their passage through the medium the refraction, 
diffraction, interference, and also absorption and division of these waves takes place, 
as for usual light waves. In this case the interconversion of particles during the 
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interpretation can be considered as a dispersion of the curvilinear waves. Therefore, 
we can suppose that the dispersion matrix of the field theory performs the same role, 
as a dispersion matrix in optics. 

7.0 About interaction Lagrangian of the non-linear 
electron equation of CWED  
In the chapter 2 we have received the approximate quantum form of non-linear Dirac 
equation Lagrangian: 

( ) ( ) ( ) ( ) ⎥⎦⎤⎢⎣
⎡ −

∆
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎥⎦

⎤
⎢⎣
⎡= ++++ 22 ˆ

8
ˆ

2
1 ψαψψψ

π
τψαψψψ

∂
∂ rr

h cdiv
t

iLN , (7.1) 

By transformation (7.1) in the electrodynamics form we have obtained from the 
following approximate electromagnetic form of Lagrangian: 
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rrh
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⎞
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⎛
+=
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∂
∂ ),    (7.2) 

which we have transform in the following expression: 

 ( )
( )

( ) ( )[ ]2222
22

22 4
88

1' HEHE
mc

HEL N

rrrrrr
⋅+−

∆
+−=

π
τ

π
,   (7.3) 

The equation (7.1) can be written also in the form: 

 ( ) ( ) ⎥⎦⎤⎢⎣
⎡ −

∆
+= +++ 22

0
ˆˆ

8
ˆ ψαψψαψ

π
τ

ψ∂αψ µµ
r

QL ,      (7.4) 

or 

 ( ) ( )[ ]2
5

2
4 ˆˆ

8
ˆ ψαψψαψ

π
τψ∂αψ µµ

+++ −
∆

+=QL ,      (7.5) 

As we noted the Lagrangian density (7.5) coincides with the Nambu and 
Jona-Lasinio Lagrangian density, which is the Lagrangian density of the relativistic 
superconductivity theory. Remember that this Lagrangian density is used for the 
solution of the problem of the elementary particles mass appearance by the 
mechanism of the vacuum symmetry spontaneous breakdown (Ryder, 1985).  

As it is known (Ryder, 1985; Bilenkii, 1982; Okun, (1982) the spontaneous 
breaking of symmetry consists in the fact that from a massless vector field, which has 
two spin states (such as the linear photon), and a massless scalar field φ , a massive 
vector particle with three isospin projections appears. It is remarkable, that this 
breaking arises at the non-linear interaction of field φ  with itself, whose self-action 
energy can be written down as potential  

 



  
 107 

 ( )2222)( ηφλφ −=V ,  (7.6) 

where   
2φ is isoscalar,   λ   is a dimensionless parameter,   η    is a parameter with 

the dimension of the mass. It is easy to see the analogies of the spontaneous breaking 
of symmetry with description of the pair production process in CWED. 

8.0. The general case of the interaction Lagrangian and 
Hamiltonian of  CWED 

As we noted, the Hamiltonian is the full system energy. For example, in case of 
interaction of two elementary particles this energy consists of the sum of three parts: 
the researched particle’s own energy, the energy of its interaction with another 
particle and the energy of the interaction of a researched particle with physical 
vacuum (the last term corresponds to the account of the polarization of physical 
vacuum). 

As we have shown in general case the CWED is the non-linear theory.   
Therefore the Lagrangian of a system must contain all possible terms with the 
invariants of electromagnetic field and can be written as some function of the field 
invariants: 

 ),( 21 IIfL L= ,      (8.1) 

where ( ) ( )HEIHEI
rrrr

⋅=−= 2
22

1 , are the invariants of electromagnetic field theory. 
Hamiltonian is fully defined through the Lagrangian of a system. If the function 

(8.1) is known, using the formula (1.13), it is easy to calculate the Hamiltonian of the 
system, which will be now, obviously, the function of the various powers of 
electromagnetic field vectors  

 ),( HEf
rr

Η=Η ,  (8.2) 

Apparently, for each problem the function  (and also  ) has its special 
form, which is unknown.  

Lf Ηf

As it is known in the case of quantum field theory the approximate form of the 
function  can be found on the basis of  Schroedinger or Dirac wave equations, 
using the so-called perturbation method. Generally this procedure has the following 
form. 

Ηf

It is supposed that there is an expansion of the function  in Taylor – 
MacLaurent power series with unknown expansion coefficient. Then the problem is 
reduced to the calculation of these coefficients. The solution is searched for each 
term of expansion separately, starting from the first. Usually for the first term of 
expansion this is a problem for a free particle, whose solution is already known. Then 
using the equation with the two first terms, we find the coefficient of the second term 

Ηf
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of expansion. Then, using the equation for the three first terms, we find the 
coefficient for the third term of expansion, etc. As it is known in the case of the 
convergent series by this method it is possible to obtain the solution with any 
desirable accuracy. 

As it is known in case of functions of two variables ),( yxf=ξ  the Taylor – 

MacLaurent power series nearly to a point  is: ),( 00 yx

( n
kn

k
Oyxf

y
yy

x
xx

k

yxfyxf

ρ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+
∂
∂

−= )

+=

∑
=

),()()(
!

1

),(),(

00
1

00

00

,  (8.3) 

where 2
0

2
0 )()( yyxx −+−=ρ , 

y
yxfyy

x
yxfxxyxf

y
yy

x
xx

∂
∂

−+
∂

∂
−≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+
∂
∂

−
),()(),()(),()()( 00

0
00

00000
, (8.4) 

       

etc
y

yxf
yy

yx
yxf

yyxx

x
yxf

xxyxf
y

yy
x

xx

,
),(

)(
),(

))((2

),(
)(),()()(

2
00

2
2

0
00

2

00

2
00

2
2

000

2

00

∂
∂

−+
∂∂

∂
−−+

+
∂

∂
−≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−+
∂
∂

−
, (8.5) 

 (In the case when  we can obtain the MacLaurent series). 0,0 00 == yx
Obviously, for the most types of the functions  the expansion 

contains approximately the same set of the terms, which distinguish only by the 
constant coefficients, any of which can be equal to zero (as an example of the 
expansion it is possible to point out the expansion of the quantum electrodynamics 
Lagrangian for particle at the presence of physical vacuum (Akhiezer and  
Berestetskii,. 1965; Schwinger, 1951; Weisskopf, 1936).  

),( 21 IIfL

Generally the expansion in the electromagnetic form will be like: 

 ( ) '
8
1 22 LBELM +−=

rr

π
,   (8.6) 

where  is the part which is responsible for the non-linear interaction: 'L

 
( ) ( ) ( )( )

( ) ( )( ) ...

'
222322

222222

+⋅−+−+

+⋅−+⋅+−=

BEBEBE

BEBEBEBEL
rrrrrr

rrrrrrrr

ζξ

γβα
, (8.7) 

and ,...,,,, ζξγβα  are constants. 
Corresponding Hamiltonian we can define as following: 
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where the Hamiltonian part responsible for non-linear interaction is: 
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2222222
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ζξ
βα ,  (8.9) 

It is not difficult to obtain the quantum representation of non-linear theory 
Hamiltonian (8.9). Replacing the electromagnetic wave field vectors by quantum 
wave function according , we will obtain a series of following type  

 ( ) ( )( )
( )( )( ) ...ˆˆˆ
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2

10

+∑+
+∑+=Η

+++

+++

ψαψψαψψαψ
ψαψψαψψαψ

kjii

jii

c
c , (8.10) 

where iα̂ , jα̂ , kα̂  are Dirac matrixes,  are coefficients of expansion. It is not 
difficult to see the analogy with expansion of fields with decomposition of  S-matrix 
on the elements (Akhiezer and  Berestetskii, 1965). 

ic

As we see, the terms of Lagrangian and Hamiltonian series contain the enough 

limited number of the same elements, such ( ) ( ) ( )2222 ,, BEBEBE
2 rrrrrr

−⋅+  as 
well as some other. It is possible to assume, that each element of series has some 
constant physical sense. In this case it is possible to see the analogy with expansion 
of fields on the electromagnetic moments, each of which accords to the particularities 
of interaction of separate particles.  

Conclusion 
The above results show that in framework of CWED there is the uniform 

description of   fields’ interaction. As we can see, the descriptions of the interactions, 
used in different sections of physics (mechanics, classical electrodynamics, quantum 
electrodynamics, etc.) are equivalent. It appears also that the interaction can be 
expressed by many different forms: as field strengths, potentials, wave functions, 
currents, energy-momentum tensor, stress, medium polarization index, etc. This 
allows us to speak about CWED as about the unified field theory. 
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